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ABSTRACT 

In weight training, correct exercise execution is crucial for 

maximizing its effectiveness and for preventing injuries. 

However, given the complexity of these movements, it is a 

challenge for trainees to know whether they are performing 

the exercise correctly. Considering the fact that wrong 

moves may result in life long injuries, it is important to 

design systems that can detect incorrect performances 

automatically. In this paper, we present a workflow to 

detect performance anomalies from only observations of 

the correct performance of an exercise by the trainee. We 

evaluated our algorithm on a benchmark data set for the 

biceps curl exercise, and also evaluated our system with a 

publicly available dataset, and showed that our method 

detects unseen anomalies in weight lifting exercises with 

98 percent accuracy. 
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Weight training, activity assessment, user feedback, 

wearable computing, clustering, machine learning 

ACM Classification Keywords 
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and tools.  

INTRODUCTION 

Weight training is an effective way of building strength, 

increasing overall health, lowering the risk of diabetes and 

improving general fitness levels, among other benefits. 

Free weight exercises—such as those using dumbbells, 

barbells and kettlebells—can produce even better results 

when compared to machines. However, they require high 

mechanical specificity—appropriate movement patterns, 

force application, and velocity of movement (Stone et al., 

2002)—in other words, a correct technique. An incorrect 

technique not only reduces the effectiveness of the 

exercise, but is also the number one cause of training 

injuries (Gallagher, 1996). This is even worse for free 

weight exercises, which account for over 90% of weight-

training injuries (Kerr et al., 2010).  

The ubiquity of motion sensors makes them an appealing 

solution for offering automated feedback on users’ 

exercise technique. However, current systems are limited 

to measuring heart rate and counting repetitions. Our goal 

is to build a system that can monitor a user’s technique 

when performing free weight exercises to ensure correct 

technique and to prevent injuries.  

A major challenge in automatically monitoring weight 

lifting exercises is the inherent complexity and high 

number of degrees-of-freedom of human movement. On 

one hand, the number of possible mistakes for any given 

exercise is huge. For example, in the exercise depicted in 

Figure 1, the trainee must lift the dumbbell all the way to 

the top, with the hips steady. Rocking the hips during the 

movement could cause serious back injury. On the other 

hand, any given exercise has multiple small variations to 

target specific muscle fibres that do not necessarily 

represent a mistake. For example, the exercise in Figure 1 

could also be performed by twisting the dumbbell while 

lifting.  

The inherent complexity of weight lifting exercises creates 

two specific challenges for any machine learning approach 

to recognise incorrect executions. First, each exercise is 

performed in sets of 6-15 repetitions, with each repetition 

being the unit of analysis. Therefore, accurately 
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Figure 1. Unilateral biceps curl performance. Top pictures 

show correct performance. Bottom row shows two 

variations. Left is a correct variation (with a green tick) and 

right is an incorrect variation (with a red cross). 
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segmenting the repetitions is a crucial first step in the 

analysis pipeline. In this paper, we revisit the dataset 

recorded by Velloso et al. to demonstrate how an accurate 

segmentation can improve the mistake recognition 

performance (Velloso et al., 2013a). Second, the huge 

number of possible mistakes for each exercise makes a 

supervised learning approach for mistake recognition 

difficult (Velloso et al., 2013b). We propose an exercise 

analysis approach that infers a prototype of an exercise 

based only on its correct execution and distinguishes 

correct performance from incorrect ones with high 

precision and recall. 

In summary, we propose a workflow for performance error 

detection in weightlifting exercises (see Figure 2). We 

therefore, contribute:  

1) A mathematical model for repetition segmentation, 

along with its concrete implementation and 

evaluation, (Figure 2-A). 

2) An algorithm that learns a prototype of an exercise 

from wearable sensor data, (Figure 2-B). 

3) A statistical method for identifying incorrect 

executions based on deviations from the exercise 

prototype, (Figure 2-C). 

4) An evaluation of our approach on a publicly available 

dataset that shows that our system is able to identify 

incorrect performance with 98% accuracy.  

RELATED WORK 

There have been many studies to show how to perform a 

routine correctly to gain the best outcome from strength 

training. For a complete guide see (Brown 2007). Thus the 

knowledge of how to perform strength training routines 

correctly is available. Although trainees can read about 

how to perform an exercise and watch online resources, it 

is still very hard for them to know whether they are 

performing the exercise correctly or not.  

In this regard, Chang et al. addressed the problem of 

detecting weight-lifting exercises using motion sensors 

(Chang et al. 2007). They showed that it is possible to use 

machine learning techniques to detect what the person has 

performed and count the number of repetition. Many 

studies have been applied the same techniques to detect 

and count the number of repetitions. In 2013, NuActiv was 

designed to answer the problem of finding the unseen 

weight-lifting activities (Cheng et al. 2013). Although 

NuActiv was successful in detecting new routines it cannot 

measure the quality of the performance. RecoFit tried to 

detect multiple weight training exercises using a wearable 

sensor on the trainee’s wrist (Morris et al. 2014). A similar 

system named FEMO is designed to monitor free-weight 

exercise online using RFID technology (Ding et al. 2015). 

However, these systems are limited in telling whether the 

trainee is following the correct form of the exercise or not. 

Detecting the errors in a weight training routine has been 

the focus of studies that assess the quality of any given 

performance. In one of the first attempts, Velloso et al. 

introduced the idea of classifying exercises by error type 

(Velloso et al. 2013a). They identified the most common 

posture errors during a specific exercise. Through an 

empirical study, they showed that using on-body motion 

sensors, it is possible to classify these error types 

performed by the user, using a classifier. However, they 

found that scaling this method to arbitrary mistakes is a 

challenge. Our method solves this shortcoming by 

introducing the idea of learning from correct 

performances. More recently Pernek et al. designed a 

hierarchical system for finding the intensity of the weight 

training exercises using machine learning tools (Pernek et 

al. 2015). Although their system can be extended to 

calculate the intensity of the performance it cannot 

differentiate between wrong performances and correct 

ones. MotionMA introduced the idea of learning from gym 

experts (Velloso et al. 2013b). The authors designed a 

system that can learn a move from experts such as personal 

trainers and monitors others during their performance to 

alert them, when some deviation detected. Their system is 

based on Microsoft Kinect. YouMove was designed to 

teach users how to perform an exercise using Microsoft 

Kinect by helping the user to mimic an experts move using 

a mirror like monitor (Anderson et al. 2013). However, the 

use of a projector/Kinect to monitor and give feedback to 

the user limits the applicability of the system in a real 

setting as it requires a pre-existing infrastructure. 

In more recent research with a focus on knee/hip injury 

detection, Ahmadi et al. showed how classifying training 

session activities helps in both aspects of injury 

management and performance enhancement (Ahmadi et al. 

2014). For a survey of activity recognition, see (Bulling et 

al. 2014; Lara and Labrador 2013).   

With all the advances in detecting anomalies in weight-

lifting exercises, the main challenge to design a system that 

can both learn the correct performance of a new move and 

inform users when deviating from the correct move is still 

unsolved. A successful system should give the users the 

freedom of performing the exercise whenever and 

wherever they want. In this paper we focus on building 

such a system through wearable sensors. Our method is 

different from the aforementioned articles in that: First, it 

is a personalised method that can be tuned for each user. 

Second, it learns the move through wearable sensors, 

where we do not have a view of the body as a whole. 

 

Figure 2. Workflow for finding incorrect moves in a 

weight lifting exercise. 
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UNDERSTANDING THE PROBLEM DOMAIN  

The lack of a proper exercise technique can not only lead 

to poorer outcomes, but can also lead to serious injury. 

Adequate supervision from a trainer is an important 

strategy to monitor the techniques of trainees and make 

sure that they perform the exercises correctly. This trainer-

trainee interaction usually follows a cyclical loop (Velloso 

et al., 2013a). First, the trainer designs a program for the 

trainee, according to their personal needs. The trainee 

performs the routine for a few weeks, while being 

monitored by the trainer. The trainer then identifies further 

strengths and weaknesses in their performance, which they 

use to design their next exercise routine. 

However, not all gym-goers can afford a personal trainer 

at every session; instead, trainees often meet their trainer 

when it is time to redesign their program. Scenario 1 

illustrates this problem: 

Mark joins a gym for the first time. At the gym, he meets 

Jane, who was assigned as his personal trainer for his first 

session. Knowing that Mark’s goals include increasing his 

overall strength, Jane designs a 6-week program including 

6 different free-weight exercises, each to be performed in 

3 sets of 10 repetitions. She demonstrates the correct 

execution of each exercise and after each demonstration 

she asks Mark to do a few repetitions to ensure that he 

understood it. She gives him feedback to improve his 

technique until reaching an acceptable performance level. 

After going over all the exercises, Mark feels confident that 

he understood them. However, next time Mark comes to the 

gym, without Jane’s supervision, he is not quite sure 

whether his performance is correct.    

This scenario illustrates how even though the trainee might 

have understood the correct technique, without adequate 

monitoring by a professional, his subsequent performance 

is prone to mistakes. This highlights an opportunity for 

wearable technology to fill this gap by ensuring that the 

trainee’s technique is correct in the absence of the trainer. 

Not only novice weight-lifters can benefit from wearable 

technology support, as Scenario 2 illustrates: 

Ronnie is an experienced weight-lifter. He is constantly 

trying to push his limits at every gym session, progressively 

increasing the weights in his exercises. Though he 

demonstrates complete mastery of the technique using 

light weights, the heavier the weight, the more difficult it is 

to maintain a proper technique. The physical and cognitive 

overload of the heavy weights make it very difficult to keep 

his hips steady as he performs a deadlift and he ends up 

straining his back.  

This scenario shows that depending on the weight being 

lifted, even an experienced lifter, who has previously 

shown good performance on a given exercise can make 

mistakes in subsequent ones. The feedback given by a 

wearable system has the potential to help them perform 

exercises with heavy weights with a similar technique as 

when they lift light weights. 

                                                           

1 UCI Machine learning dataset: Wight Lifting Exercise Monitored 

Combined, these scenarios suggest three important design 

challenges and opportunities. First, when a trainer teaches 

an exercise, though she may point out common mistakes, 

it is infeasible to record every possible mistake. Therefore, 

a system should be able to analyse further performances of 

an exercise based only on a correct execution. Second, 

given the multiple possible variations for a given exercise 

depending on the specific needs of individual trainees, a 

system should be able to learn a user-specific model of the 

exercise, tailored to each particular execution style. Third, 

we can assume that at a certain point the trainee is able to 

perform the exercise with the correct technique (under the 

supervision of the trainer in Scenario 1 and with a light 

weight in Scenario 2). Therefore, we are able to train a 

classifier with the data from a given user to evaluate 

subsequent performance of the same user.  

In the following sections, we present our approach to 

exercise analysis based on these principles. We first revisit 

the dataset of Velloso et al. (2013b) and demonstrate how 

an improved segmentation procedure can improve mistake 

detection in a supervised learning approach. We then 

propose a novel analysis method based only on the correct 

execution of an exercise that does not require the 

demonstration of mistakes, but is still able to detect them.  

SEGMENTING REPETITIONS 

Segmentation is the process of finding each individual 

repeat in a given time-series. Since our focus is on each 

individual repeat we need to find a way to correctly 

extracting each repeat from a given accelerometer time-

series data. 

Velloso et al. studied the possibility of classifying form 

correctness in weight training through unilateral biceps 

curls (Velloso et al. 2013a). They took a supervised 

learning approach, by recording both the correct execution 

of the exercise, as well as common types of mistakes. 

Because we use their dataset to evaluate our approach, in 

this section, we briefly describe the dataset and propose a 

new segmentation approach that improves the recognition 

accuracy using the same classifier used by those authors.  

Dataset 

The dataset of Velloso et al. includes the data from 6 

participants performing 10 repetitions of the unilateral 

biceps curl exercise with 5 variations (Velloso et al., 

2013a). The dataset is publicly available in the UCI 

Machine Learning Repository1. 

A unilateral dumbbell curl is a weight training exercise 

focused on strengthening the biceps muscle. The 

description of the exercise is as follows and is illustrated in 

Figure 1 (top row): 

 Stand with a dumbbell in each hand.  

 Keep the upper arm stationary, while bringing one of the 

forearms up until it reaches its maximum bend.  

 Return the arm to its original position slowly. 

 Repeat the same move with the other arm. 

https://goo.gl/sgS91d
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The authors defined four common errors happening during 

this exercise as follows: Class B: Moving upper arm to the 

front. Class C: Lifting the dumbbell half way up and return. 

Class D: Lowering the dumbbell halfway down. Class E: 

Pulling the forearm with the help of the hips at the start to 

lift the dumbbell. The correct form of the exercise is 

labelled Class A, accordingly. For each class label, they 

asked 6 participants to perform the exercise according to 

its class label specification. They collected the data using 

4 sets of sensors placed on the glove, upper arm, dumbbell 

and belt. Each sensor set contains one three-axis 

accelerometer, one three-axis gyroscope and one compass. 

Each participant performs 10 repeats of the exercise for 

each label. For the detailed explanation of the dataset 

collection method see Velloso et al. (2013a).  

Pre-processing 

Any motion sensor will show some degree of white noise 

which comes from the nature of the sensor. White noise 

shows itself as small perturbations around the actual value. 

Any successful analysis of the data must first remove this 

noise from the data (Yun et al. 2006). In the literature the 

smoothing effect of a Kalman Filter has been praised as a 

high pass filter that can remove the noise with a high 

accuracy (Kalman 1960; Jun et al. 2006). In this project, 

we used a density based Kalman Filter implementation 

(Byron et al. 2004). Since we are trying to remove white 

noise, we configured the Kalman filter with low sensitivity 

to the current read and high sensitivity to previous reads by 

setting the deviation of the current reads to be 10 times the 

deviation of the previous reads. The result is shown in 

Figure 3.   

We draw the readers’ attention to the peak parts from the 

raw data. The accelerometer shows a very sudden high 

acceleration and drop, which is due to the effect of 

stopping the dumbbell. It is clear how the Kalman Filter 

reduces this effect and smooths the result. 

Since the data is published separately, for consistency we 

went through all the labelling to verify that the labels are 

correct. We found issues with the correct execution of 2 of 

the participants. By definition, label-A data should have a 

steady pattern from the belt accelerometer data. However, 

in two cases, the participants incorrectly moved their hips 

during the exercise, as illustrated in Figure 4. We therefore 

discarded the data from these two participants from our 

subsequent analyses. 

Segmentation 

Weight training exercises are mostly repetitive tasks where 

trainees perform the same move for a few repetitions, i.e., 

the move starts from a starting point, follows a path in 

space and returns to the starting point again. Each exercise 

set will contain 6-15 of these repetitions. Therefore, the 

collected data from motion sensors will show a cyclical 

pattern in the time series. An example for a unilateral 

biceps curl acceleration data can be seen in Figure 5. 

As a result, correctly identifying the move using the 

motion-graph requires finding its starting point in the 

acceleration graph. To formulate a move, define “𝑓” to be 

the time-movement function showing the path for the 

move in space. Thus 𝑓 is a function of change-of-position 

in 𝑥, 𝑦 and 𝑧 direction. See equation 1. 

𝒇 = 𝒈(𝒙, 𝒚, 𝒛)    (1) 

As a result, we need to define function 𝑔 to describe the 

move. Since finding the actual move is highly dependent 

on all three dimensions and very sensitive to any 

noise/error in the data, we followed the method described 

in (Mortazavi et al. 2014). They showed that in weight 

training exercises motion can be mainly captured from a 

single axis in space. We call this axis the axis-of-effect 

(AoE). For example, “𝑦-axis” is the AoE in the unilateral 

biceps curl exercise (Figure 6).   

 

 
Figure 3. Smothing accelerometer with Kalman Filter. 

Top figure shows the raw data from accelerometer. 

Bottom figure  shows the result of Kalman Filter on the 

same data. 

 

Figure 4. High perturbation area for Jeremy makes his 

class label “A” invalid. For a correct label for class “A” 

we expect a steady series like the one in the top figure. 

Note that the actual repeats start at around 𝒕𝒊𝒎𝒆 = 𝟖𝟎𝟎 

for Jeremy. 
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Figure 6. y-axis is the Axis-of-Effect (AoE) in unilateral 

biceps curl. The actual motion happens in y direction 

(drawn in red). 

The unilateral biceps curl in the AoE direction starts with 

a positive acceleration to lift the weight up. Then it follows 

a negative acceleration, which results in stopping the 

dumbbell at the peak. It is then followed by a negative 

acceleration pattern to bring down the dumbbell, which 

follows a positive acceleration to bring the dumbbell back 

to the steady point. Therefore, function 𝑓 can be estimated 

by 𝑔(𝑎𝐴𝑜𝐸(𝑡)) where 𝑎𝐴𝑜𝐸(𝑡) is the acceleration function 

in the AoE direction and 𝑡 is time. 

𝑓 ≈ 𝑔(𝑎𝐴𝑜𝐸(𝑡)) 

Considering the unilateral biceps move, we are searching 

for points in the function 𝑓 where the function has reached 

its optimum values. That is: 

𝑑𝑓

𝑑𝑡
= 0 

Using the chain rule: 

𝑑𝑓

𝑑𝑡
=

𝑑𝑔

𝑑𝑎

𝑑𝑎

𝑑𝑡
= 0 

Since changes in acceleration can describe the changes in 

movement, we can estimate the optimum points by only 

considering 
𝑑𝑎

𝑑𝑡
= 0. That is: 

𝑑𝑓

𝑑𝑡
= 0 ≈

𝑑𝑎

𝑑𝑡
= 0 

We look for points in the acceleration-time graph where 

the derivatives went to zero, or equivalently we are looking 

for points where the derivatives of the acceleration-time 

function changes sign. Since we are looking only for start 

points of each move, we only look for minimum points on 

the acceleration-time graph, which lets us segment the 

repetitions (indicated by dots in Figure 5). 

To evaluate the accuracy of our model, we manually 

annotated the acceleration-time graph and compared the 

manually annotated segments with the automatically 

detected segments. Table 1 shows the performance of our 

model for finding the repeats in acceleration-time graph.  

 Precision Recall 

Average 0.965 0.82 

Table 1. The average precision and recall for the 

segmentation algorithm. 

The result shows that our algorithm finds the correct 

segmentation points with high precision. The recall value 

shows that the algorithm finds more segments than 

necessary. Filtering the points by the average repetition 

size improves the recall to 90%, which is an acceptable 

rate. 

Classification 

In Velloso et al. (2013b), the authors reported the best 

classification accuracy achieved by segmenting the data 

using a fixed sliding window of length 2.5 seconds. This 

result comes from the fact that each repeat will take around 

2 seconds. Therefore, setting the window size to 2.5 

seconds will capture the entire move. However, a fixed 

window size will result in two main problems. First, a fixed 

window size captures overlapping repetitions, resulting in 

missing the starting and ending part of a repeat. Missing 

the start or end of a repeat will stop any system from 

correctly alerting users as soon as they start deviating from 

a correct form. Second, a fixed window size is highly 

dependent on the person and the exercise. For example, if 

the user performs the exercise too quickly, a fixed window 

might capture two or more repetitions. Given that our unit 

of analysis is each individual repetition, it is crucial to 

capture the whole repetition with no extra data. 

For comparison, we applied the same classifier proposed 

by Velloso et al., only using our segmentation method. The 

result is presented in Table 2. The result shows that our 

proposed algorithm not only provides a method that can 

easily be generalized, but also boosts the classification 

task. 

 A B C D E 

Optimum point 57.3 56.3 56.7 56.4 56.8 

Fixed window 52.1 54 53.5 53.7 53.2 

Figure 5. Motion sensors will show a repetitive 

pattern for weight lifting exercises. In this figure, 

the repetitive pattern is clear from the 

accelerometer attached to the trainee’s forearm, 

while performing a unilateral biceps curl.  

 

Table 2. The average precision of the classification 

task in percentage. The top row is from data 

segmented by our method. The bottom row is from 

a fixed window size. 
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Discussion 

These results show that in a supervised learning scenario, 

where we have data for the correct execution of an 

exercise, as well as data for each possible repetition, 

segmenting the data using windows that precisely match 

the repetition improves the classification performance. 

However, it is unlikely that in a realistic use case we would 

have data for every possible mistake. Given that an 

incorrect form might result in lifelong injury, the stakes for 

the problem are high enough that we need a system that 

can robustly detect previously unseen mistakes only based 

on the correct form of the exercise. In such systems, a 

model should be created from the correct moves. After 

learning the correct move, every move is compared with 

the ground truth model to detect deviations from the 

model. Designing such a model is not a straightforward 

task. There are many parameters involved in a ground truth 

model such as the height of the person, the weight used for 

the exercise, the duration of the repeat, etc. In the next 

section, we show how we can derive a personalized model 

from the correct moves in the exercise we are studying, a 

ground truth model for the unilateral biceps curl. 

DERIVING A GROUND TRUTH MODEL  

The two scenarios we presented above suggest that at some 

point the trainee will be able to demonstrate a correct 

performance, either because he is under the supervision of 

a trainer or he is using a lighter weight. Using this 

assumption, we can derive a user-dependent ground truth 

model specific to the trainee’s needs that they can use in 

subsequent repetitions (when the trainer is absent or with a 

heavier weight) to evaluate their performance.  

Data collection 

In this phase the personal trainer makes sure the person is 

capable of correctly performing the exercise and initiates 

data collection. We use the class label A, from the dataset 

of Velloso et al. as our correct data. 

Pre-processing 

As discussed earlier, the recorded data for an exercise 

routine includes multiple repeats of same exercise. 

However, each routine starts and ends with recordings, 

which are usually related to releasing or carrying the 

weight, not related to the actual routine. To clear Class A 

segmentation, we used a clustering algorithm to put the 

segments with high similarity into the same group. This 

task is very important because we can make sure the 

ground truth method is only generated from homogenous 

segments and prune from any anomalies itself. We 

continued the clustering algorithm until we had a cluster of 

size “number of repeats - 2”. This value is selected because 

we are aware that starting and ending segments might have 

extra movements that make them different from the 

segments for the rest of the repeats. We used the single 

linkage clustering algorithm to cluster our segments. For 

the distance in the single linkage clustering we used two 

metrics described in the next section. 

Distance metrics 

Distance from two time-series can be defined by mapping 

every point of one time-series to another point in the other 

time-series. Then the distance is the result of summation 

over every two pairs in the two time-series. See Figure 7 

and equation 2. Figure 7 shows one of the possible maps 

for the two time-series. The points with the same x-value 

are mapped to each other. By defining the distance 

function, 𝑑𝑖𝑠𝑡, as the distance between two pairs the 

distance between two time-series 𝑋 = (𝑥1, … , 𝑥𝑛) and 𝑌 =
(𝑦1, … , 𝑦𝑛) is defined as: 

𝒑 = ∑ 𝒅𝒊𝒔𝒕(𝒙𝒊, 𝒚𝒊)𝒏
𝒊=𝟏    ( 2 ) 

We are looking for a map that minimizes 𝑝. The distance 

matrix for a set of time series will be a matrix where each 

cell represents the minimum distance between the time 

series indexed by the row and the column of the matrix. 

There are many possible options for a distance function. 

The k-shape algorithm suggests that the normalized cross 

correlation metric is a reliable choice. We are using the 

same function for our experiment. 

Ground Truth Prototype 

Deriving a prototype for time-series data is a challenging 

task. The main issue is how we can map one time-series to 

another. The main method for such a mapping is based on 

finding the minimum distance from mapping each point 

from one time-series to another. Dynamic Time Warping 

(DTW) (Muller 2007) has been traditionally used to 

perform this task. More recently, the K-shape (Paparrizos 

and Gravano 2015) algorithm has been introduced with 

promising results. Both approaches will derive a 

comparison based method to define a distance between 

time-series data. By clustering the time-series data, 

Paparrizos and Gravano showed how to design an 

algorithm that can find a trajectory which satisfies the 

minimum sum distance between its points and all the other 

points in the associated time-series cluster.  

Paparrizos and Gravano showed that by knowing a 

distance matrix, we can reduce the problem of finding the 

prototype for a cluster to a maximum likelihood problem 

where the eigenvectors of the Hessian matrix will define 

the prototype for the cluster. They named their algorithm 

shape-extraction, which we will adopt in this paper. For a 

detailed argument see the original paper shape (Paparrizos 

and Gravano 2015).  

In this paper, we use the same method for deriving a 

prototype trajectory from the correctly performed moves. 

We then use a statistical method to capture any deviation 

 
Figure 7. Mapping two time-series. 



 7 

from this prototype. First we briefly describe k-shape and 

DTW metrics and how we can derive the trajectory.  

To find the ground truth trajectory, we developed 

Algorithm 1. For each person in the dataset, we passed all 

the homogenous segments clustered in pre-processing part 

from the class A dataset to the shape-extraction algorithm 

and find the ground truth trajectory (Personal GTT). 

Finding anomalies 

Using Personal GTT, we first enumerate each segment 

from each person and calculate the associated trajectory for 

that segment. Then, for each point in time in the trajectory 

set we find the mean and standard deviation among all 

calculated trajectories. Receiving any new segment for the 

person we find the trajectory for the new segment 

according to the related Personal GTT. We then compare 

each point in the new trajectory to be with in the 𝑚𝑒𝑎𝑛 ±
3𝑠. 𝑑. range. Three standard deviations is selected from the 

3 sigma rule which states that nearly all values from a 

distribution occur within the range of three standard 

deviations from the mean value (Grafarend 2006). If any 

point is found outside this margin from the new trajectory, 

we label it as a wrong form segment. See Algorithm 2. 

Since anomalies may be found from different sensors—for 

example when the trainee is moving their hip the belt 

accelerometer will detect the mistake—we applied the 

same algorithm (find-anomalies) for each time-series from 

the available accelerometer sensors attached to belt, arm 

and forearm. We define a deviation from the correct form 

as any deviation from any time-series from any sensor. 

This way our system can also detect why the person is 

deviating from a correct form. For example, in the test 

study for the unilateral biceps curl, the system tells whether 

the trainee is moving their hip or their arm when they were 

not supposed to. The system also detects when during the 

segment the user deviated from the correct form, i.e., 

whether it was in the first quarter of the move, in the 

middle or in the last quarter. These two sets of information 

not only help users maintain the correct form but also let 

personal trainers to design more personalised routines that 

consider the strength and weakness of each trainee. For a 

brief overview of the output of each step in the workflow 

see Figure 8. The workflow starts by collecting some data 

for the correct performance of the move (sample data is 

 

A                 B 

 

C 

    

D            E 

       

Algorithm 1. Finding the prototype for the master class. 

Personal class segments come from clustering similar 

segments of the correct class in the pre-processing phase. 

Algorithm 2. Checking anomalies for new data 

Figure 8. Finding weightlifting anomalies workflow in 

a nutshell. A. Collecting raw data for correct 

performance. B. Smoothing the raw data. C. Creating 

a homogenous cluster of correct segments. D. Deriving 

the ground truth (Red line). E. Calculating standard 

deviation for the ground truth (Dashed line) 
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shown in Figure 8-A). We remove all the white noise from 

the collected data using a Kalman filter and segment the 

data using our proposed segmentation algorithm (Figure 8-

B). We create a homogenous cluster from the segments 

created in part B. (Figure 8-C). We derive the prototype for 

the ground truth performance using the homogenous 

cluster (red line in Figure 8-D). We calculate the standard 

deviation for our prototype using the correct performance 

(dashed line in Figure 8-E). Note that the homogeneity of 

segments in part C will make sure that only the correct 

performances of the exercise are considered for deriving 

the ground truth in part D and not moves with an extra part 

such as the very first move in which the data contains the 

part where the trainee is picking the weight at the very 

beginning of the routine.  

Results 

To test our approach, we used the same dataset and two 

metrics, namely dynamic time warping and shape-based. 

We considered class label A as the correctly performed 

class and used the rest of the classes as the test cases. For 

testing our ground truth trajectory, we manually labelled 

each correct segment in class A and feed them to 

Algorithm 2. The result can be seen in Table 1. 

Both algorithms can reliably detect mistakes for the 

Unilateral Biceps Curl. However, it is clear that shape 

based distance can perform the task better in finding the 

trajectory. This is mainly because of the way k-shape 

algorithm finds distances, which highlights the correlation 

among the points in two time-series. Both algorithms have 

shown some false positives which are mainly for the 

segments at the start or end of the routine. This is mainly 

because the start and end of a routine is very hard to 

correctly segment. It is often the case that the segmentation 

has considered an extra part to the beginning of the 

segment for the starting segment or considered an extra 

part for the ending segment. These mis-segmentations 

result in False Positives in our algorithm. 

DISCUSSION 

In this paper we designed a system that can learn an 

activity from the user and monitor the person to perform 

the weight lifting task. Our main focus for this research 

was on weight training exercises. However, the scope of 

our system is not limited to weight lifting activities. We 

would like to see the performance of our system in other 

applications where users must perform some repetitive 

task and their performance needs to be monitored, such as 

physiotherapy, physical rehabilitation, elderly fitness, 

health insurance, etc. In physiotherapy and in post-surgery 

in general, doctors will ask their patients to perform some 

daily routines and monitor their progress. It is often the 

case that the patients will learn a routine at the hospital and 

then should follow the same routine at home for a few 

weeks or months. Our system can be seen as provide the 

foundation for doctors to monitor their patients’ progress.  

In recent years we have seen scenarios where insurance 

companies try to promote the health of their clients by 

encouraging them to be more active. In these scenarios 

insurance companies can use our system to help their 

clients perform strength training routines correctly which 

has been shown to improve the health and wellbeing of 

their clients.  

CONCLUSION 

In this paper, we designed a system that detects incorrect 

moves from learning only the correctly performed routine. 

We showed why correctly segmenting each repetition 

during a weight lifting exercise is important. We designed 

a mathematical model that can detect the start and end 

point of each repetition, while the user is performing the 

exercise. We designed our workflow based on the 

segments from correctly performed routines. This lets us 

use our system in an online environment where the system 

can detect any anomalies as soon as the end of a repetition 

is detected. 

Our workflow starts by correctly segmenting the time-

series data using the data from an Axis-of-Effect 

accelerometer. It calculates the prototype from the 

segments using the extract-shape method proposed by 

Paparrizos and Gravano (Paparrizos and Gravano 2015). 

Using the derived prototype, the system finds the 

distribution of the trajectory from mapping each segment 

to the prototype. Finally, for each new segment it checks 

whether the new data’s trajectory to the ground truth is 

from the calculated distribution or not. If not, the algorithm 

rejects the segment and alerts the trainee of an anomaly. 

Since the only input argument for calculating the prototype 

is correctly segmented temporal data, our method can be 

easily generalized to any motion sensors, observing other 

parts of the body during the exercise. We just need to 

segment the relative data according to the Axis-of-Effect 

sensor. Afterwards, the workflow can find anomalies for 

any sensor attached to the trainee’s body. This 

generalization lets us detect any anomalies from 

movement in any other parts of the body, which in turn 

helps both trainees and trainers to work closely together to 

achieve their goals. 

In this paper we designed a system that both beginners and 

professional weight lifters can benefit from. Beginners can 

learn how to perform a correct routine under a personal 

trainer’s supervision. Our system will help them maintain 

the correct form while exercising on their own. 

Professionals can train our system by performing the 

correct routine in a safe environment, like using light 

weights. Then our system will help them maintain the 

correct form while exercising under more difficult 

conditions, such as at the end of the session or with heavier 

weights.  

 

Shape Base 

Distance 

Dynamic Time 

Warping 

TP FP TP FP 

Pedro 𝟒𝟏
𝟒𝟐⁄  𝟎

𝟏𝟎⁄  40
42⁄  1

10⁄  

Carlitos 
𝟒𝟒

𝟒𝟒⁄  𝟎
𝟏𝟎⁄  43

44⁄  𝟎
𝟏𝟎⁄  

Charles 
𝟒𝟒

𝟒𝟒⁄  𝟐
𝟏𝟎⁄  𝟒𝟒

𝟒𝟒⁄  3
10⁄  

Eurico 
𝟒𝟎

𝟒𝟎⁄  𝟐
𝟏𝟎⁄  𝟒𝟎

𝟒𝟎⁄  3
10⁄  

Table 1. True Positive (TP) and False Positive (FP) for 

anomaly detection algorithm. The cells with bold font 

show the winner algorithm for detecting anomalies. 
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