Research interests

  • Artificial Intelligence, Modelling and Simulation (Artificial Intelligence, Modelling and Simulation)
  • Data Mining and Machine Learning (Data Mining and Machine Learning)
  • Decision Support and Optimisation (Decision Support and Optimisation)
  • Health Informatics (Health Informatics)
  • Robustness and Uncertainty (Robustness and Uncertainty)

Personal webpage


Professor Uwe Aickelin is the Head of School of Computing and Information Systems at the University of Melbourne. Prior to this role he was Vice-President at the University of Nottingham Ningbo China and Head of School of Computer Science at the University of Nottingham. He also served for many years as a strategic adviser on Artificial Intelligence to the UK Research Councils and Government.

Professor Aickelin has worked for more than twenty years in the fields of Artificial Intelligence, Optimisation and Data Mining. His specific expertise is in the modelling stages of problems with a focus on robust methods to overcome uncertainty. He has authored over 200 papers in leading international journals and conferences (Google citations 9000, H-index 50) and participated in over 100 international conference programme committees. Since 2007 he has been an associate editor of the leading international journal in his field (IEEE Transactions on Evolutionary Computation).

His YouTube videos have been watched by more than 600,000 people:
Anti-Learning - So bad it’s good
How GCHQ classifies computer security
Machine Learning Methods
Nuggets of Data Gold
The Known Unknowns
Why missing data is the best
Artificial Intelligence - the code for consciousness

Recent publications

  1. Akbarzadeh Khorshidi H, Marembo M, Aickelin U. Predictors of Return to Work for Occupational Rehabilitation Users in Work-Related Injury Insurance Claims: Insights from Mental Health. Journal of Occupational Rehabilitation. Springer. 2019. DOI: 10.1007/s10926-019-09835-4
  2. Roadknight C, Rattadilok P, Aickelin U. Teaching Key Machine Learning Principles Using Anti-learning Datasets. Proceedings of 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering, TALE 2018. 2019. DOI: 10.1109/TALE.2018.8615252
  3. Dent I, Craig T, Aickelin U, Rodden T. A Method for Evaluating Options for Motif Detection in Electricity Meter Data. Journal of Data Science. 2018, Vol. 16, Issue 1.
  4. Fattah P, Aickelin U, Wagner C. Measuring behavioural change of players in public goods game. Studies in Computational Intelligence. Springer. 2018, Vol. 751. DOI: 10.1007/978-3-319-69266-1_12
  5. Fattah P, Aickelin U, Wagner C. Measuring Player's Behaviour Change over Time in Public Goods Game. PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2. Hindawi Publishing Corp. 2018, Vol. 16. Editors: Bi Y, Kapoor S, Bhatia R. DOI: 10.1007/978-3-319-56991-8_81
  6. Aickelin U, Reps JM, Siebers P-O, Li P. Using simulation to incorporate dynamic criteria into multiple criteria decision-making. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY. Palgrave. 2018, Vol. 69, Issue 7. DOI: 10.1080/01605682.2017.1410010
  7. Fu X, Ch'ng E, Aickelin U, See S. CRNN: A Joint Neural Network for Redundancy Detection. 2017 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP). IEEE. 2017.
  8. Jiang X, Bai R, Landa-Silva D, Aickelin U. Fuzzy C-Means-based Scenario Bundling for Stochastic Service Network Design. 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI). IEEE. 2017.
  9. Fattah P, Aickelin U, Wagner C. Measuring Behavioural Change of Players in Public Goods Game. . Springer. 2017, Vol. tba.
  10. Kabir S, Wagner C, Havens TC, Anderson DT, Aickelin U. Novel Similarity Measure for Interval-Valued Data Based on Overlapping Ratio. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE). Institute of Electrical and Electronics Engineers. 2017. DOI: 10.1109/FUZZ-IEEE.2017.8015623
  11. Siuly S, Huang Z, Aickelin U, Zhou R, Wang H, Zhang Y, Klimenko SV. Preface. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag. 2017, Vol. 10594 LNCS.
  12. Aickelin U. Robust Datamining. 4th Asia Pacific Conference on Advanced Research (APCAR- MAR 2017), Melbourne, Australia. 2017.
  13. Ruan C, Wang Y, Zhang Y, Ma J, Chen H, Aickelin U, Zhu S, Zhang T. THCluster:Herb Supplements Categorization for Precision Traditional Chinese Medicine. 2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM). IEEE. 2017. Editors: Hu XH, Shyu CR, Bromberg Y, Gao J, Gong Y, Korkin D, Yoo I, Zheng JH.
  14. Navarro J, Wagner C, Aickelin U, Green L, Ashford R. Exploring Differences in Interpretation of Words Essential in Medical Expert-Patient Communication. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE). IEEE. 2016.
  15. Navarro J, Wagner C, Aickelin U, Green L, Ashford R. Measuring Agreement on Linguistic Expressions in Medical Treatment Scenarios. IEEE Symposium Series on Computational Intelligence (IEEE SSCI). IEEE. 2016.

View a full list of publications on the University of Melbourne’s ‘Find An Expert’ profile